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The canonical GRB picture

Daniel Siegel

How does the relativistic blast wave give rise to observable emission?

GRB afterglows

The canonical (S)GRB picture
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• What is the nature of the central engine, how is its energy tapped? Association to BNS?

• Composition of the outflow (e+e-, photons, baryons)? Collimation?

• How is the energy stored (thermal, kinetic or magnetic)?
• What are the dominant emission mechanisms (synchrotron, inverse Compton, thermal)?

But:

Disputationsvortrag



Synchrotron afterglow spectrum

Daniel Siegel

Two regimes:

GRB afterglows

Let us first concentrate on the former case of fast cooling. At low frequencies ⌫ < ⌫c,
where

⌫c = ⌫max(�e,c), (104)

the spectrum is given by Eq. (103), as all electrons that underwent fast cooling will ‘pile up’
at �e = �e,c. At intermediate frequencies ⌫c < ⌫ < ⌫m (�e,c < �e < �e,m) there is no injection
of particles (N = 0) and we obtain from Eq. (99): N(�e) / �̇

�1
e / �

�2
e . Using q = 2 in

Eq. (101) we thus find
P⌫,tot / ⌫

�1/2
, ⌫c < ⌫ < ⌫m. (105)

At high frequencies, ⌫ > ⌫m (�e > �e,m), Eq. (99) yields dN/d�e / �
�p�2
e , and thus N(�e) /

�
�p�1
e . Setting q = p+ 1 in Eq. (101), we find

P⌫,tot / ⌫
�p/2

, ⌫ > max(⌫m, ⌫c). (106)

For slow cooling, the low-frequency part is again given by Eq. (103). At intermediate
frequencies ⌫m < ⌫ < ⌫c (�e,m < �e < �e,c), N(�e) = N (�e), and setting q = p we obtain
from Eq. (101):

P⌫,tot / ⌫
�(p�1)/2

, ⌫m < ⌫ < ⌫c. (107)

At high frequencies ⌫ > ⌫c (�e > �e,c), electrons cool fast and particles are injected according
to N / �

�p
e , such that the spectral power is given by Eq. (106).

In summary, and converting to observed total flux F⌫,tot = P⌫,tot/4⇡D, where D = d�R

is the distance to the observer (Sec. (2.3.1)), we find for fast cooling (�e,m > �e,c)

F⌫,tot =

8
<

:

(⌫/⌫c)1/3F⌫,max, ⌫ < ⌫c

(⌫/⌫c)�1/2
F⌫,max, ⌫c < ⌫ < ⌫m

(⌫/⌫m)�p/2(⌫m/⌫c)�1/2
F⌫,max, ⌫ > ⌫m

(108)

and for slow cooling (�e,m < �e,c)

F⌫,tot =

8
<

:

(⌫/⌫m)1/3F⌫,max, ⌫ < ⌫m

(⌫/⌫m)�(p�1)/2
F⌫,max, ⌫m < ⌫ < ⌫c

(⌫/⌫c)�p/2(⌫c/⌫m)�(p�1)/2
F⌫,max, ⌫ > ⌫c

. (109)

The global maximum of the spectra is determined by the electrons at �e = min(�m, ⌫c), where
most of the electron population resides. Making use of Eqs. (93) and (82) the maximum flux
is then roughly given by
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which sets the overall normalization of the spectra. Here, Ne = 3⇡R3
n/4⇡ is the total

number of electrons swept up by the blast wave.

2.3.3 Constructing GRB afterglow lightcurves & spectra

In this section, we compute the total synchrotron emission of an ultrarelativistic blast wave
by combining the hydrodynamic evolution with the synchrotron spectrum that we computed
for a generic shock front in the previous section. Using the hydrodynamic blast wave solution
for � and R as seen by the distant observer (Eqs. (77) and Eq. (78)) in Eqs. (104), (102),
and (110), we find that the synchrotron spectrum of the blast wave evolves according to
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Fig. 1.—Synchrotron spectrum of a relativistic shock with a power-law
electron distribution. (a) Fast cooling, which is expected at early times (t !

). The spectrum consists of four segments, identified as A, B, C, and D. Self-t0
absorption is important below . The frequencies, , , and , decrease withn n n na m c a

time as indicated; the scalings above the arrows correspond to an adiabatic
evolution, and the scalings below, in square brackets, correspond to a fully
radiative evolution. (b) Slow cooling, which is expected at late times ( ).t 1 t0
The evolution is always adiabatic. The four segments are identified as E, F,
G, and H.

, where ; and an exponential cutoff for21/2n(g ) P ª n n 1e n

. The maximum emissivity occurs at and is given byn(g ) ne c

.Pn,max
To calculate the net spectrum from a power-law distribution

of electrons, we need to integrate over . There are now twoge
different cases, depending on whether or .g 1 g g ! gm c m c

Let the total number of swept-up electrons in the postshock
fluid be . When , all the electrons cool3N 5 4pR n/3 g 1 ge m c

down to roughly , and the spectral power at is approxi-g nc c

mately . We call this the case of fast cooling. The fluxN Pe n,max
at the observer, , is given byFn

1/3(n/n ) F , n 1 n,c n,max c
21/2F 5 (n/n ) F , n 1 n 1 n , (7)n c n,max m c{ 21/2 2p/2(n /n ) (n/n ) F , n 1 n ,m c m n,max m

where and is the observed2n { n(g ) F { N P /4pDm m n,max e n,max
peak flux at distance D from the source.
When , only those electrons with can cool.g 1 g g 1 gc m e c

We call this slow cooling, because the electrons with ,g ª ge m

which form the bulk of the population, do not cool within a
time t, and we have

1/3(n/n ) F , n 1 n,m n,max m
2(p21)/2F 5 (n/n ) F , n 1 n 1 n , (8)n m n,max c m{ 2(p21)/2 2p/2( ) ( )n /n n/n F , n 1 n .c m c n,max c

The typical spectra corresponding to fast and slow cooling
are shown in Figures 1a and 1b. The low-energy part of these
spectra has empirical support even within the GRB itself (Co-
hen et al. 1997). In addition to the various power-law regimes
described above, self-absorption causes a steep cutoff of the
spectrum at low frequencies (Katz 1994; Waxman 1997b; Katz
& Piran 1997a). For completeness, we show this regime in
Figure 1, but we shall ignore it for the rest of this Letter since
it does not affect either the optical or the X-ray radiation in
which we are interested.

3. HYDRODYNAMIC EVOLUTION AND LIGHT CURVES

The instantaneous spectra do not depend on the hydrody-
namic evolution of the shock. The light curves at a given fre-
quency, however, depend on the temporal evolution of various
quantities, such as the break frequencies and and the peakn nm c

flux . These depend, in turn, on how g and scale as aF Nn,max e

function of t.
We limit the discussion here to a spherical shock of radius
propagating into a constant surrounding density n. WeR(t)

consider two extreme limits for the hydrodynamic evolution
of the shock: either fully radiative or fully adiabatic. In a ra-
diative evolution, all the internal energy generated in the shock
is radiated. This requires two conditions to be satisfied: (1) the
fraction of the energy going into the electrons must be large,
i.e., , and (2) we must be in the regime of fast cooling,e r 1e

.g ! gc m

In the adiabatic case, the energy E of the spherical shock is
constant and is given by (Blandford &2 3 2E 5 16pg R nm c /17p

McKee 1976; Sari 1997). In the radiative case, the energy varies
as , where . Here23 1/3E / g g ˘ (R/L) L 5 [17M/(16pm n)]p

(Blandford & McKee 1976; Vietri 1996; Katz & Piran 1997a)
is the radius at which the mass swept up from the external
medium equals the initial mass M of the ejecta (we used

instead of in order to be compatible with the adiabatic17/16 3/4
expression and to enable a smooth transition between the two);

we write M in terms of the initial energy of the explosion via
, where is the initial Lorentz factor of the ejecta.2M 5 E/g c g0 0

In both the adiabatic and radiative cases, there is a simple
relation connecting R, g, and t: , where the nu-2t 5 R/cg ct

merical value of varies between ª3 and ª7 depending onct
the details of the hydrodynamic evolution and the spectrum
(Sari 1997, 1998; Waxman 1997c; Panaitescu & Mészáros
1997). For simplicity, we use for all cases. We then2t ˘ R/4g c
have the following hydrodynamic evolution equations,

1/4(17Et/4pm nc) , adiabatic,pR(t) ˘ (9)1/7{(4ct/L) L, radiative,

5 3 1/8(17E/1024pnm c t ) , adiabatic,pg(t) ˘ (10)23/7{(4ct/L) , radiative.

Using these scalings and the results of the previous section,
we can calculate the variation with time of all the relevant
quantities. For an adiabatic evolution,

12 23/2 21/2 21 21/2n 5 2.7# 10 e E n t Hz,c B 52 1 d

14 1/2 2 1/2 23/2n 5 5.7# 10 e e E t Hz,m B e 52 d

5 1/2 1/2 22F 5 1.1# 10 e E n D mJy, (11)n,max B 52 1 28

where is the time in days, ergs, is n in units52t E 5 E/10 nd 52 1
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�1
e / �

�2
e . Using q = 2 in

Eq. (101) we thus find
P⌫,tot / ⌫

�1/2
, ⌫c < ⌫ < ⌫m. (105)

At high frequencies, ⌫ > ⌫m (�e > �e,m), Eq. (99) yields dN/d�e / �
�p�2
e , and thus N(�e) /
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�p�1
e . Setting q = p+ 1 in Eq. (101), we find

P⌫,tot / ⌫
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, ⌫ > max(⌫m, ⌫c). (106)

For slow cooling, the low-frequency part is again given by Eq. (103). At intermediate
frequencies ⌫m < ⌫ < ⌫c (�e,m < �e < �e,c), N(�e) = N (�e), and setting q = p we obtain
from Eq. (101):

P⌫,tot / ⌫
�(p�1)/2

, ⌫m < ⌫ < ⌫c. (107)

At high frequencies ⌫ > ⌫c (�e > �e,c), electrons cool fast and particles are injected according
to N / �

�p
e , such that the spectral power is given by Eq. (106).

In summary, and converting to observed total flux F⌫,tot = P⌫,tot/4⇡D, where D = d�R

is the distance to the observer (Sec. (2.3.1)), we find for fast cooling (�e,m > �e,c)

F⌫,tot =
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The global maximum of the spectra is determined by the electrons at �e = min(�m, ⌫c), where
most of the electron population resides. Making use of Eqs. (93) and (82) the maximum flux
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which sets the overall normalization of the spectra. Here, Ne = 3⇡R3
n/4⇡ is the total

number of electrons swept up by the blast wave.

2.3.3 Constructing GRB afterglow lightcurves & spectra

In this section, we compute the total synchrotron emission of an ultrarelativistic blast wave
by combining the hydrodynamic evolution with the synchrotron spectrum that we computed
for a generic shock front in the previous section. Using the hydrodynamic blast wave solution
for � and R as seen by the distant observer (Eqs. (77) and Eq. (78)) in Eqs. (104), (102),
and (110), we find that the synchrotron spectrum of the blast wave evolves according to
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Let us first concentrate on the former case of fast cooling. At low frequencies ⌫ < ⌫c,
where

⌫c = ⌫max(�e,c), (104)

the spectrum is given by Eq. (103), as all electrons that underwent fast cooling will ‘pile up’
at �e = �e,c. At intermediate frequencies ⌫c < ⌫ < ⌫m (�e,c < �e < �e,m) there is no injection
of particles (N = 0) and we obtain from Eq. (99): N(�e) / �̇
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e / �
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e . Using q = 2 in

Eq. (101) we thus find
P⌫,tot / ⌫
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, ⌫c < ⌫ < ⌫m. (105)

At high frequencies, ⌫ > ⌫m (�e > �e,m), Eq. (99) yields dN/d�e / �
�p�2
e , and thus N(�e) /
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�p�1
e . Setting q = p+ 1 in Eq. (101), we find

P⌫,tot / ⌫
�p/2

, ⌫ > max(⌫m, ⌫c). (106)

For slow cooling, the low-frequency part is again given by Eq. (103). At intermediate
frequencies ⌫m < ⌫ < ⌫c (�e,m < �e < �e,c), N(�e) = N (�e), and setting q = p we obtain
from Eq. (101):

P⌫,tot / ⌫
�(p�1)/2

, ⌫m < ⌫ < ⌫c. (107)

At high frequencies ⌫ > ⌫c (�e > �e,c), electrons cool fast and particles are injected according
to N / �

�p
e , such that the spectral power is given by Eq. (106).

In summary, and converting to observed total flux F⌫,tot = P⌫,tot/4⇡D, where D = d�R

is the distance to the observer (Sec. (2.3.1)), we find for fast cooling (�e,m > �e,c)

F⌫,tot =
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<

:

(⌫/⌫c)1/3F⌫,max, ⌫ < ⌫c
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and for slow cooling (�e,m < �e,c)
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The global maximum of the spectra is determined by the electrons at �e = min(�m, ⌫c), where
most of the electron population resides. Making use of Eqs. (93) and (82) the maximum flux
is then roughly given by
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which sets the overall normalization of the spectra. Here, Ne = 3⇡R3
n/4⇡ is the total

number of electrons swept up by the blast wave.

2.3.3 Constructing GRB afterglow lightcurves & spectra

In this section, we compute the total synchrotron emission of an ultrarelativistic blast wave
by combining the hydrodynamic evolution with the synchrotron spectrum that we computed
for a generic shock front in the previous section. Using the hydrodynamic blast wave solution
for � and R as seen by the distant observer (Eqs. (77) and Eq. (78)) in Eqs. (104), (102),
and (110), we find that the synchrotron spectrum of the blast wave evolves according to
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Let us first concentrate on the former case of fast cooling. At low frequencies ⌫ < ⌫c,
where

⌫c = ⌫max(�e,c), (104)

the spectrum is given by Eq. (103), as all electrons that underwent fast cooling will ‘pile up’
at �e = �e,c. At intermediate frequencies ⌫c < ⌫ < ⌫m (�e,c < �e < �e,m) there is no injection
of particles (N = 0) and we obtain from Eq. (99): N(�e) / �̇

�1
e / �

�2
e . Using q = 2 in

Eq. (101) we thus find
P⌫,tot / ⌫

�1/2
, ⌫c < ⌫ < ⌫m. (105)

At high frequencies, ⌫ > ⌫m (�e > �e,m), Eq. (99) yields dN/d�e / �
�p�2
e , and thus N(�e) /
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�p�1
e . Setting q = p+ 1 in Eq. (101), we find

P⌫,tot / ⌫
�p/2

, ⌫ > max(⌫m, ⌫c). (106)

For slow cooling, the low-frequency part is again given by Eq. (103). At intermediate
frequencies ⌫m < ⌫ < ⌫c (�e,m < �e < �e,c), N(�e) = N (�e), and setting q = p we obtain
from Eq. (101):

P⌫,tot / ⌫
�(p�1)/2

, ⌫m < ⌫ < ⌫c. (107)

At high frequencies ⌫ > ⌫c (�e > �e,c), electrons cool fast and particles are injected according
to N / �

�p
e , such that the spectral power is given by Eq. (106).

In summary, and converting to observed total flux F⌫,tot = P⌫,tot/4⇡D, where D = d�R

is the distance to the observer (Sec. (2.3.1)), we find for fast cooling (�e,m > �e,c)

F⌫,tot =
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<

:
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and for slow cooling (�e,m < �e,c)
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The global maximum of the spectra is determined by the electrons at �e = min(�m, ⌫c), where
most of the electron population resides. Making use of Eqs. (93) and (82) the maximum flux
is then roughly given by
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which sets the overall normalization of the spectra. Here, Ne = 3⇡R3
n/4⇡ is the total

number of electrons swept up by the blast wave.

2.3.3 Constructing GRB afterglow lightcurves & spectra

In this section, we compute the total synchrotron emission of an ultrarelativistic blast wave
by combining the hydrodynamic evolution with the synchrotron spectrum that we computed
for a generic shock front in the previous section. Using the hydrodynamic blast wave solution
for � and R as seen by the distant observer (Eqs. (77) and Eq. (78)) in Eqs. (104), (102),
and (110), we find that the synchrotron spectrum of the blast wave evolves according to
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Let us first concentrate on the former case of fast cooling. At low frequencies ⌫ < ⌫c,
where

⌫c = ⌫max(�e,c), (104)

the spectrum is given by Eq. (103), as all electrons that underwent fast cooling will ‘pile up’
at �e = �e,c. At intermediate frequencies ⌫c < ⌫ < ⌫m (�e,c < �e < �e,m) there is no injection
of particles (N = 0) and we obtain from Eq. (99): N(�e) / �̇

�1
e / �

�2
e . Using q = 2 in

Eq. (101) we thus find
P⌫,tot / ⌫

�1/2
, ⌫c < ⌫ < ⌫m. (105)

At high frequencies, ⌫ > ⌫m (�e > �e,m), Eq. (99) yields dN/d�e / �
�p�2
e , and thus N(�e) /
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e . Setting q = p+ 1 in Eq. (101), we find

P⌫,tot / ⌫
�p/2

, ⌫ > max(⌫m, ⌫c). (106)

For slow cooling, the low-frequency part is again given by Eq. (103). At intermediate
frequencies ⌫m < ⌫ < ⌫c (�e,m < �e < �e,c), N(�e) = N (�e), and setting q = p we obtain
from Eq. (101):

P⌫,tot / ⌫
�(p�1)/2

, ⌫m < ⌫ < ⌫c. (107)

At high frequencies ⌫ > ⌫c (�e > �e,c), electrons cool fast and particles are injected according
to N / �

�p
e , such that the spectral power is given by Eq. (106).

In summary, and converting to observed total flux F⌫,tot = P⌫,tot/4⇡D, where D = d�R

is the distance to the observer (Sec. (2.3.1)), we find for fast cooling (�e,m > �e,c)

F⌫,tot =
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<

:
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and for slow cooling (�e,m < �e,c)
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The global maximum of the spectra is determined by the electrons at �e = min(�m, ⌫c), where
most of the electron population resides. Making use of Eqs. (93) and (82) the maximum flux
is then roughly given by
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which sets the overall normalization of the spectra. Here, Ne = 3⇡R3
n/4⇡ is the total

number of electrons swept up by the blast wave.

2.3.3 Constructing GRB afterglow lightcurves & spectra

In this section, we compute the total synchrotron emission of an ultrarelativistic blast wave
by combining the hydrodynamic evolution with the synchrotron spectrum that we computed
for a generic shock front in the previous section. Using the hydrodynamic blast wave solution
for � and R as seen by the distant observer (Eqs. (77) and Eq. (78)) in Eqs. (104), (102),
and (110), we find that the synchrotron spectrum of the blast wave evolves according to
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Let us first concentrate on the former case of fast cooling. At low frequencies ⌫ < ⌫c,
where

⌫c = ⌫max(�e,c), (104)

the spectrum is given by Eq. (103), as all electrons that underwent fast cooling will ‘pile up’
at �e = �e,c. At intermediate frequencies ⌫c < ⌫ < ⌫m (�e,c < �e < �e,m) there is no injection
of particles (N = 0) and we obtain from Eq. (99): N(�e) / �̇

�1
e / �

�2
e . Using q = 2 in

Eq. (101) we thus find
P⌫,tot / ⌫
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, ⌫c < ⌫ < ⌫m. (105)

At high frequencies, ⌫ > ⌫m (�e > �e,m), Eq. (99) yields dN/d�e / �
�p�2
e , and thus N(�e) /
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�p�1
e . Setting q = p+ 1 in Eq. (101), we find

P⌫,tot / ⌫
�p/2

, ⌫ > max(⌫m, ⌫c). (106)

For slow cooling, the low-frequency part is again given by Eq. (103). At intermediate
frequencies ⌫m < ⌫ < ⌫c (�e,m < �e < �e,c), N(�e) = N (�e), and setting q = p we obtain
from Eq. (101):

P⌫,tot / ⌫
�(p�1)/2

, ⌫m < ⌫ < ⌫c. (107)

At high frequencies ⌫ > ⌫c (�e > �e,c), electrons cool fast and particles are injected according
to N / �

�p
e , such that the spectral power is given by Eq. (106).

In summary, and converting to observed total flux F⌫,tot = P⌫,tot/4⇡D, where D = d�R

is the distance to the observer (Sec. (2.3.1)), we find for fast cooling (�e,m > �e,c)
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and for slow cooling (�e,m < �e,c)
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The global maximum of the spectra is determined by the electrons at �e = min(�m, ⌫c), where
most of the electron population resides. Making use of Eqs. (93) and (82) the maximum flux
is then roughly given by
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which sets the overall normalization of the spectra. Here, Ne = 3⇡R3
n/4⇡ is the total

number of electrons swept up by the blast wave.

2.3.3 Constructing GRB afterglow lightcurves & spectra

In this section, we compute the total synchrotron emission of an ultrarelativistic blast wave
by combining the hydrodynamic evolution with the synchrotron spectrum that we computed
for a generic shock front in the previous section. Using the hydrodynamic blast wave solution
for � and R as seen by the distant observer (Eqs. (77) and Eq. (78)) in Eqs. (104), (102),
and (110), we find that the synchrotron spectrum of the blast wave evolves according to
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Fig. 2.—Synchrotron light curve (ignoring self-absorption). (a) High-
frequency case ( ). The four segments that are separated by the criticaln 1 n0
times, , , and , correspond to the spectral segments in Fig. 1 with thet t tc m 0

same labels (B, C, D, and H). The observed flux varies with time as indicated;
the scalings within square brackets are for radiative evolution (which is re-
stricted to ), and the other scalings are for adiabatic evolution. (b) Low-t ! t0
frequency case ( ).n ! n0

of , and cm. For a fully radiative evolution,23 28cm D 5 D/1028
the results are

13 23/2 24/7 4/7 213/14 22/7n 5 1.3# 10 e E g n t Hz,c B 52 2 1 d

14 1/2 2 4/7 24/7 21/14 212/7n 5 1.2# 10 e e E g n t Hz,m B e 52 2 1 d

3 1/2 8/7 28/7 5/14 22 23/7F 5 4.5# 10 e E g n D t mJy, (12)n,max B 52 2 1 28 d

where we have scaled by a factor of 100: .g g { g /1000 2 0
The spectra presented in Figure 1 show and for typicaln nc m

parameters. In both the adiabatic and radiative cases, de-nc
creases with time slower than . Therefore, at sufficiently earlynm
times, , i.e., fast cooling, while at later times, , i.e.,n ! n n 1 nc m c m

slow cooling. The transition between the two occurs when
at :n 5 n tc m 0

2 2210e e E n days, adiabatic,B e 52 1t 5 (13)0 7/5 7/5 4/5 24/5 3/5{4.6e e E g n days, radiative.B e 52 2 1

At , the spectrum changes from fast cooling (Fig. 1a) tot 5 t0
slow cooling (Fig. 1b). In addition, if , the hydrodynamice r 1e

evolution changes at this stage from radiative to adiabatic (see
also Mészáros, Rees, & Wijers 1997). If , the evolutione K 1e

would have been adiabatic throughout. If during the fast-cool-
ing phase ( ) is somewhat less than unity, then only at ! t e0 e

fraction of the shock energy is lost to radiation. The scalings
will be intermediate between the two limits of fully radiative
and fully adiabatic discussed here.
During radiative evolution, the shock’s energy decreases

with time. When a radiative shock switches to adiabatic evo-
lution at time , it is necessary to use the reduced energy,t 5 t0

, to calculate the subsequent adiabatic evolution. The finalEf,52
energy, , is related to the initial energy, , of the fireballE Ef,52 i,52
by

23/5 23/5 4/5 24/5 22/5E 5 0.022e e E g n . (14)f,52 B e i,52 2 1

Once we know how the break frequencies, and , and then nc m

peak flux, , vary with time, we can calculate the lightFn,max
curve. Consider a fixed frequency . It follows from15n 5 10 n15
equations (11) and (12) that there are two critical times, andtc
, when the break frequencies, and , cross the observedt n nm c m

frequency n:

26 23 21 22 227.3# 10 e E n n days, adiabatic,B 52 1 15t 5c 27 221/4 22 2 213/4 27/2{2.7# 10 e E g n n days, radiative,B 52 2 1 15

(15)

1/3 4/3 1/3 22/30.69e e E n days, adiabatic,B e 52 15t 5m 7/24 7/6 1/3 21/3 27/12 21/24{0.29e e E g n n days, radiative.B e 52 2 15 1

(16)

There are only two possible orderings of , , and , namely,t t tc m 0
and . We define the critical frequency,t 1 t 1 t t ! t ! t0 m c 0 m c

:n 5 n (t ) 5 n (t )0 c 0 m 0

11 25/2 21 21 23/21.8# 10 e e E n Hz, adiabatic,B e 52 1n 50 12 219/10 22/5 24/5 4/5 211/10{8.5# 10 e e E g n Hz, radiative.B e 52 2 1

(17)

When , the ordering applies, and we refer ton 1 n t 1 t 1 t0 0 m c

the corresponding light curve as the high-frequency light curve.
Similarly, when , we have , and we obtain then ! n t ! t ! t0 0 m c

low-frequency light curve.
Figure 2a depicts a typical high-frequency light curve. At

early times, the electrons cool fast and . Ignoringn ! n ! nc m

self-absorption, the situation corresponds to segment B in Fig-
ure 1, and the flux varies as . If the evolution1/3F ª F (n/n )n n,max c

is adiabatic, is constant and . In the radiative case,1/6F F ª tn,max n

and . Figure 2a also depicts the scalings23/7 21/3F ª t F ª tn,max n

in the other segments, which correspond to C, D, and H in
Figure 1, and can be derived in a similar fashion. Figure 2b
shows the low-frequency light curve, corresponding to .n ! n0
Here there are four phases in the light curve, corresponding to
segments B, F, G, and H. The time dependences of the flux
are also shown.

4. DISCUSSION

The main results of this Letter are summarized in Figures 1
and 2, along with the scalings given in equations (11)–(17).
It is well known that the flux at the peak of the synchrotron

spectrum is independent of time in the slow-cooling limit for
adiabatic hydrodynamic evolution (Katz 1994; Mészáros &
Rees 1997). We have shown in this Letter that the peak flux
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This critical frequency defines two observing scenarios, referred to as the high-frequency and
low-frequency lightcurve. If ⌫obs > ⌫0, then the only possible sequence of events for this
high-frequency lightcurve is tc < tm < t0 (cf. Fig. 2). In contrast, when ⌫obs < ⌫0 the
only possible sequence for the low-frequency lightcurve is t0 < tm < tc. The corresponding
power-law segments for F⌫,tot(⌫obs) from Eqs. (108) and (109) can best be identified visually
from Fig. 2. In detail we find for the high-frequency lightcurve
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For a given wavelength band ⌫obs, Eqs. (125) and (126) represent the expected temporal
evolution of the afterglow lightcurve.

Fitting lightcurves (and/or spectra) as given in Eqs. (125), (126), (108), and (109) to-
gether with the scalings of break frequencies and times as in Eqs. (117), (119), (121), (111)–
(113) to data of GRB afterglows allows us to infer both macroscopic and microphysical
parameters of the GRB. In essence, the free parameters of the model are E, n, ✏e, ✏B , and
p. One can thus obtain macroscopic quantities of the GRB, such as the (kinetic, isotropic-
equivalent) blast wave energy, i.e., the energy of the explosion, and the density of the circum-
burst ISM, but also microphysical quantities, such as the power-law index p of the injected
electron spectrum at the shock or the shock energetics in terms of ✏e and ✏B . We note that
the assumption of a spherical blast wave made here is adequate although the early outflow
is thought to be jetted, i.e., collimated within some jet opening angle ✓j. This is because for
an ultra-relativistic blast wave, � > 1/✓j at su�ciently early times, and radiation emitted
locally is beamed into a cone of opening angle 1/�, causally disconnected from other regions
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Fig. 1.—Synchrotron spectrum of a relativistic shock with a power-law
electron distribution. (a) Fast cooling, which is expected at early times (t !

). The spectrum consists of four segments, identified as A, B, C, and D. Self-t0
absorption is important below . The frequencies, , , and , decrease withn n n na m c a

time as indicated; the scalings above the arrows correspond to an adiabatic
evolution, and the scalings below, in square brackets, correspond to a fully
radiative evolution. (b) Slow cooling, which is expected at late times ( ).t 1 t0
The evolution is always adiabatic. The four segments are identified as E, F,
G, and H.

, where ; and an exponential cutoff for21/2n(g ) P ª n n 1e n

. The maximum emissivity occurs at and is given byn(g ) ne c

.Pn,max
To calculate the net spectrum from a power-law distribution

of electrons, we need to integrate over . There are now twoge
different cases, depending on whether or .g 1 g g ! gm c m c

Let the total number of swept-up electrons in the postshock
fluid be . When , all the electrons cool3N 5 4pR n/3 g 1 ge m c

down to roughly , and the spectral power at is approxi-g nc c

mately . We call this the case of fast cooling. The fluxN Pe n,max
at the observer, , is given byFn

1/3(n/n ) F , n 1 n,c n,max c
21/2F 5 (n/n ) F , n 1 n 1 n , (7)n c n,max m c{ 21/2 2p/2(n /n ) (n/n ) F , n 1 n ,m c m n,max m

where and is the observed2n { n(g ) F { N P /4pDm m n,max e n,max
peak flux at distance D from the source.
When , only those electrons with can cool.g 1 g g 1 gc m e c

We call this slow cooling, because the electrons with ,g ª ge m

which form the bulk of the population, do not cool within a
time t, and we have

1/3(n/n ) F , n 1 n,m n,max m
2(p21)/2F 5 (n/n ) F , n 1 n 1 n , (8)n m n,max c m{ 2(p21)/2 2p/2( ) ( )n /n n/n F , n 1 n .c m c n,max c

The typical spectra corresponding to fast and slow cooling
are shown in Figures 1a and 1b. The low-energy part of these
spectra has empirical support even within the GRB itself (Co-
hen et al. 1997). In addition to the various power-law regimes
described above, self-absorption causes a steep cutoff of the
spectrum at low frequencies (Katz 1994; Waxman 1997b; Katz
& Piran 1997a). For completeness, we show this regime in
Figure 1, but we shall ignore it for the rest of this Letter since
it does not affect either the optical or the X-ray radiation in
which we are interested.

3. HYDRODYNAMIC EVOLUTION AND LIGHT CURVES

The instantaneous spectra do not depend on the hydrody-
namic evolution of the shock. The light curves at a given fre-
quency, however, depend on the temporal evolution of various
quantities, such as the break frequencies and and the peakn nm c

flux . These depend, in turn, on how g and scale as aF Nn,max e

function of t.
We limit the discussion here to a spherical shock of radius
propagating into a constant surrounding density n. WeR(t)

consider two extreme limits for the hydrodynamic evolution
of the shock: either fully radiative or fully adiabatic. In a ra-
diative evolution, all the internal energy generated in the shock
is radiated. This requires two conditions to be satisfied: (1) the
fraction of the energy going into the electrons must be large,
i.e., , and (2) we must be in the regime of fast cooling,e r 1e

.g ! gc m

In the adiabatic case, the energy E of the spherical shock is
constant and is given by (Blandford &2 3 2E 5 16pg R nm c /17p

McKee 1976; Sari 1997). In the radiative case, the energy varies
as , where . Here23 1/3E / g g ˘ (R/L) L 5 [17M/(16pm n)]p

(Blandford & McKee 1976; Vietri 1996; Katz & Piran 1997a)
is the radius at which the mass swept up from the external
medium equals the initial mass M of the ejecta (we used

instead of in order to be compatible with the adiabatic17/16 3/4
expression and to enable a smooth transition between the two);

we write M in terms of the initial energy of the explosion via
, where is the initial Lorentz factor of the ejecta.2M 5 E/g c g0 0

In both the adiabatic and radiative cases, there is a simple
relation connecting R, g, and t: , where the nu-2t 5 R/cg ct

merical value of varies between ª3 and ª7 depending onct
the details of the hydrodynamic evolution and the spectrum
(Sari 1997, 1998; Waxman 1997c; Panaitescu & Mészáros
1997). For simplicity, we use for all cases. We then2t ˘ R/4g c
have the following hydrodynamic evolution equations,

1/4(17Et/4pm nc) , adiabatic,pR(t) ˘ (9)1/7{(4ct/L) L, radiative,

5 3 1/8(17E/1024pnm c t ) , adiabatic,pg(t) ˘ (10)23/7{(4ct/L) , radiative.

Using these scalings and the results of the previous section,
we can calculate the variation with time of all the relevant
quantities. For an adiabatic evolution,

12 23/2 21/2 21 21/2n 5 2.7# 10 e E n t Hz,c B 52 1 d

14 1/2 2 1/2 23/2n 5 5.7# 10 e e E t Hz,m B e 52 d

5 1/2 1/2 22F 5 1.1# 10 e E n D mJy, (11)n,max B 52 1 28

where is the time in days, ergs, is n in units52t E 5 E/10 nd 52 1
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The old age of the host’s stellar population, the lack of detectable
current star formation at the position of the burst, and the low
redshift compared to most long GRBs point to a binary progenitor
that had a coalescence time of * 1Gyr. The small offset, however,
suggests that the kick velocity imparted to the system was probably
too small to unbind it from the host. In this context a comparison to
two recent short GRBs is illustrative. GRB 050509b was possibly
associated5,6 with an elliptical galaxy at z ¼ 0.225, but the poor
localization (9.3 00 radius6) also allowed an association with higher-
redshift star-forming galaxies. The results on GRB 050724 now
support the claimed association with the elliptical galaxy. On the
other hand, GRB 050709 was precisely localized within 3 kpc of a
star-forming galaxy24 at z ¼ 0.16. While this association does not
allow a definitive argument against a massive star origin, it suggests
that the progenitors of short GRBs occur in diverse environments,
and with a range of coalescence timescales. This scenario is similar to
that of type Ia supernovae25.
We conclude with the following intriguing possibilities. First, the

isotropic-equivalent prompt energy release appears to correlate with
the burst duration, such that the luminosity is nearly constant,
L g ,iso < (3–15) £ 1050 erg. This may explain why the afterglow of
the 40-ms duration GRB 050509b was significantly fainter than those
of GRBs 050709 and 050724. Second, the small offsets and low
redshifts of the latter two bursts may contrast with population
synthesis models, which predict22,23 90% of the offsets to be
.10 kpc, and a median redshift z < 0.5–1. Finally, if the beaming
inferred for GRB 050724 is typical of the short burst population, then
this implies that the true event rate of short bursts is about fifty times
higher than observed. This suggests that & 10% of neutron star–
neutron star and neutron star–black hole binaries26 end their lives in
GRB explosions. The continued detection of short GRBs by Swift will

allow these conclusions to be tested through the distribution of
energies, jet angles and offsets.

Received 3 August; accepted 14 September 2005.

1. Kouveliotou, C. et al. Identification of two classes of gamma-ray bursts.
Astrophys. J. 413, L101–-L104 (1993).

2. Pian, E. et al. Hubble Space Telescope Imaging of the optical transient
associated with GRB 970508. Astrophys. J. 492, L103–-L106 (1998).

3. Frail, D. A. et al. Beaming in gamma-ray bursts: Evidence for a standard energy
reservoir. Astrophys. J. 562, L55–-L58 (2001).

4. Katz, J. I. & Canel, L. M. The long and the short of gamma-ray bursts.
Astrophys. J. 471, 915–-920 (1996).

5. Bloom, J. S. et al. Closing in on a short-hard burst progenitor: Constraints from
early-time optical imaging and spectroscopy of a possible host galaxy of GRB
050509b. Preprint at khttp://arXiv.org/astro-ph/0505480l (2005).

6. Gehrels, N. et al. A short g -ray burst apparently associated with an elliptical
galaxy at redshift z ¼ 0.225. Nature 437, 851–-854 (2005).

7. Fox, D. B. et al. The afterglow of GRB 050709 and the nature of the short-hard
g -ray bursts. Nature 437, 845–-850 (2005).

8. Hjorth, J. et al. The optical afterglow of the short g -ray burst GRB 050709.
Nature 437, 859–-861 (2005).

9. Prochaska, J. X. et al. GRB 050724: secure host redshift from Keck. GCN Circ.
3700 (2005).

10. Krimm, H. et al. GRB050724: refined analysis of the Swift-BAT possible short
bursts. GCN Circ. 3667 (2005).

11. Barthelmy, S. D. et al. An origin for short g -ray bursts unassociated with
current star formation. Nature doi:10.1038/nature04392 (this issue).

12. D’Avanzo, P. et al. GRB050724: VLT observations of the variable source. GCN
Circ. 3690 (2005).

13. Bloom, J. S., Dupree, A., Chen, H.-W. & Prochaska, J. X. GRB050724: GMOS
imaging and spectroscopy. GCN Circ. 3679 (2005).

14. Freedman, D. L. & Waxman, E. On the energy of gamma-ray bursts. Astrophys.
J. 547, 922–-928 (2001).

15. Berger, E., Kulkarni, S. R. & Frail, D. A. A standard kinetic energy reservoir in
gamma-ray burst afterglows. Astrophys. J. 590, 379–-385 (2003).

16. Lithwick, Y. & Sari, R. Lower limits on Lorentz factors in gamma-ray bursts.
Astrophys. J. 555, 540–-545 (2001).

17. Granot, J. & Sari, R. The shape of spectral breaks in gamma-ray burst
afterglows. Astrophys. J. 568, 820–-829 (2002).

18. Sari, R., Piran, T. & Halpern, J. P. Jets in gamma-ray bursts. Astrophys. J. 519,
L17–-L20 (1999).

19. Dressler, A. & Gunn, J. E. Spectroscopy of galaxies in distant clusters. II—The
population of the 3C 295 cluster. Astrophys. J. 270, 7–-19 (1983).

20. Bloom, J. S., Kulkarni, S. R. & Djorgovski, S. G. The observed offset distribution
of gamma-ray bursts from their host galaxies: a robust clue to the nature of
the progenitors. Astron. J. 123, 1111–-1148 (2002).

21. Christensen, L., Hjorth, J. & Gorosabel, J. UV star-formation rates of GRB host
galaxies. Astron. Astrophys. 425, 913–-926 (2004).

22. Fryer, C. L., Woosley, S. E. & Hartmann, D. H. Formation rates of black hole
accretion disk gamma-ray bursts. Astrophys. J. 526, 152–-177 (1999).

23. Guetta, D. & Piran, T. The luminosity and redshift distributions of short-
duration GRBs. Astron. Astrophys. 435, 421–-426 (2005).

24. Price, P. A. GRB 050709: spectroscopy. GCN Circ. 3605 (2005).
25. van den Bergh, S. The frequency of SN IA in galaxies of different Hubble type.

Publ. Astron. Soc. Pacif. 102, 1318–-1320 (1990).
26. Phinney, E. S. The rate of neutron star binary mergers in the universe—Minimal

predictions for gravity wave detectors. Astrophys. J. 380, L17–-L21 (1991).
27. Barris, B. J., Tonry, J. L., Novicki, M. C. & Wood-Vasey, W. M. The NN2 flux

difference method for constructing variable object light curves. Preprint at
khttp://arXiv.org/astro-ph/0507584l (2005).

28. Burrows, D. et al. GRB 050724: Chandra observations of the X-ray afterglow.
GCN Circ. 3697 (2005).

29. Cole, S. et al. The 2dF galaxy redshift survey: near-infrared galaxy luminosity
functions. Mon. Not. R. Astron. Soc. 326, 255–-273 (2001).

30. Schlegel, D. J., Finkbeiner, D. P. & Davis, M. Maps of dust infrared emission for
use in estimation of reddening and cosmic microwave background radiation
foregrounds. Astrophys. J. 500, 525–-553 (1998).

Acknowledgements We are, as always, indebted to S. Barthelmy and the GCN.
GRB research at Carnegie and Caltech is supported in part by funds from NASA.
E.B. and A.G.Y. are supported by NASA through Hubble Fellowship grants
awarded by the Space Telescope Science Institute, which is operated by AURA,
Inc., for NASA. The VLA is operated by the National Radio Astronomy
Observatory, a facility of the National Science Foundation operated under
cooperative agreement by Associated Universities, Inc.

Author Information Reprints and permissions information is available at
npg.nature.com/reprintsandpermissions. The authors declare no competing
financial interests. Correspondence and requests for materials should be
addressed to E.B. (eberger@ociw.edu).

Figure 3 | Radio to X-ray spectral energy distribution of the afterglow
emission 12 h after the burst. In the optical and NIR bands the open circles
are themeasured fluxes without a correction for Galactic extinction.We find
that the Galactic extinction along the line of sight required for reconciling
the optical, NIR and X-ray fluxes is AV< 2.7mag, about 35% higher than
the tabulated value30. The inferred extinction is in very good agreement with
the increased hydrogen column density, NH < 5.6 £ 1021 cm22, inferred11

from the X-ray afterglow, and it indicates that the excess absorption has a
Galactic, rather than host galaxy, origin. The lines are synchrotron models17

of the afterglow emission. We find a best-fit solution with an energy of
EK ,iso < 1.5 £ 1051 erg, a density of n < 0.1 cm23, and fractions of energy in
the relativistic electrons and magnetic field of e e < 0.04 and e B < 0.02,
respectively. A slight degeneracy between the energy and density is shown by
the thin line, which marginally fits the data.
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Let us first concentrate on the former case of fast cooling. At low frequencies ⌫ < ⌫c,
where

⌫c = ⌫max(�e,c), (104)

the spectrum is given by Eq. (103), as all electrons that underwent fast cooling will ‘pile up’
at �e = �e,c. At intermediate frequencies ⌫c < ⌫ < ⌫m (�e,c < �e < �e,m) there is no injection
of particles (N = 0) and we obtain from Eq. (99): N(�e) / �̇

�1
e / �

�2
e . Using q = 2 in

Eq. (101) we thus find
P⌫,tot / ⌫

�1/2
, ⌫c < ⌫ < ⌫m. (105)

At high frequencies, ⌫ > ⌫m (�e > �e,m), Eq. (99) yields dN/d�e / �
�p�2
e , and thus N(�e) /

�
�p�1
e . Setting q = p+ 1 in Eq. (101), we find

P⌫,tot / ⌫
�p/2

, ⌫ > max(⌫m, ⌫c). (106)

For slow cooling, the low-frequency part is again given by Eq. (103). At intermediate
frequencies ⌫m < ⌫ < ⌫c (�e,m < �e < �e,c), N(�e) = N (�e), and setting q = p we obtain
from Eq. (101):

P⌫,tot / ⌫
�(p�1)/2

, ⌫m < ⌫ < ⌫c. (107)

At high frequencies ⌫ > ⌫c (�e > �e,c), electrons cool fast and particles are injected according
to N / �

�p
e , such that the spectral power is given by Eq. (106).

In summary, and converting to observed total flux F⌫,tot = P⌫,tot/4⇡D, where D = d�R

is the distance to the observer (Sec. (2.3.1)), we find for fast cooling (�e,m > �e,c)

F⌫,tot =

8
<

:

(⌫/⌫c)1/3F⌫,max, ⌫ < ⌫c

(⌫/⌫c)�1/2
F⌫,max, ⌫c < ⌫ < ⌫m

(⌫/⌫m)�p/2(⌫m/⌫c)�1/2
F⌫,max, ⌫ > ⌫m

(108)

and for slow cooling (�e,m < �e,c)

F⌫,tot =

8
<

:

(⌫/⌫m)1/3F⌫,max, ⌫ < ⌫m

(⌫/⌫m)�(p�1)/2
F⌫,max, ⌫m < ⌫ < ⌫c

(⌫/⌫c)�p/2(⌫c/⌫m)�(p�1)/2
F⌫,max, ⌫ > ⌫c

. (109)

The global maximum of the spectra is determined by the electrons at �e = min(�m, ⌫c), where
most of the electron population resides. Making use of Eqs. (93) and (82) the maximum flux
is then roughly given by

F⌫,max =
1

4⇡D2
NeP⌫,max =

mec
3
�T

9e
(32⇡mp)

1/2
✏
1/2
B n

3/2
�
2
R

3
D

�2
, (110)

which sets the overall normalization of the spectra. Here, Ne = 3⇡R3
n/4⇡ is the total

number of electrons swept up by the blast wave.

2.3.3 Constructing GRB afterglow lightcurves & spectra

In this section, we compute the total synchrotron emission of an ultrarelativistic blast wave
by combining the hydrodynamic evolution with the synchrotron spectrum that we computed
for a generic shock front in the previous section. Using the hydrodynamic blast wave solution
for � and R as seen by the distant observer (Eqs. (77) and Eq. (78)) in Eqs. (104), (102),
and (110), we find that the synchrotron spectrum of the blast wave evolves according to

⌫c =
9

2
p
34

meec
1/2

mp�
2
T

✏
�3/2
B n

�1
E

�1/2
t
�1/2

, (111)

⌫m =

p
34

⇡

m
2
pe

m3
ec

5/2
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B E
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, (112)

F⌫,max =
17

18
p
2⇡

mec�T

m
1/2
p e

✏
1/2
B n

1/2
ED

�2
, (113)
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Afterglow spectrum of GW170817

X-ray to radio emission from GW170817 originates from the
same non-thermal spectral component.

To refine our measurement of the X-ray to radio spectral
slope βXR at ∼110 days we account for the (mild) temporal
evolution of the afterglow flux adopting the iterative procedure
that follows. We initially assume a fiducial spectral index value
βi=0.60, which is used to construct a “master” radio light-
curve of GW170817 at a given frequency using the entire set of
radio observations available at all frequencies. Radio data have

been compiled from Alexander et al. (2017), Hallinan et al.
(2017), Kim et al. (2017), and Mooley et al. (2017). We fit the
master radio light-curve with a power-law model Fν∝tα. The
best-fitting α is then used to renormalize the flux densities
measured at δt=111–114 days to a common epoch of
109 days since merger (to match the time of CXO observa-
tions). Finally, we estimate βf from a joint fit of the broadband
radio-to-X-ray spectrum at 109 days. This procedure is
repeated until convergence (i.e., βf= βf within error bars).
We find βXR=0.585±0.005 and α=0.73±0.04
(Figure 1). As a comparison, from the analysis of radio data
alone at t<93 days Mooley et al. (2017) inferred
βR=0.61±0.05, consistent with our results. Our measure-
ment of the spectral slope benefits from the significantly larger
baseline of eight orders of magnitude in frequency, and is
consequently more precise. We plot in Figure 1 the HST
measurement obtained by Lyman et al. (2018) at 110 days. This
comparison shows a remarkable agreement with our best-fitting
SED and demonstrates that at 110 days since merger the optical
emission from GW170817 is of non-thermal origin and
originates from the afterglow.
The X-ray and radio light-curves suggest that GW170817

might be now approaching its peak of non-thermal emission.
From a fit of the radio-to-X-ray SED at ∼160 days we find
βXR=0.584±0.006, consistent with the value at 110 days.
We compile in Figure 1 the radio-to-X-ray SEDs of

GW170817 at 15 and 9 days (orange and blue symbols). At
these epochs the thermal emission from the radioactive decay
of freshly synthesized heavy elements (i.e., the kilonova)
dominates the UV-optical-NIR bands. Figure 1 shows that a
rescaled version of the βXR=0.585 spectrum that best fits the
110 days epoch adequately reproduces the X-ray and radio
emission from GW170817 at all times. Interestingly, the
extrapolation of the X-ray flux density at 9 days with a ∝ν−0.6

spectrum matches the 6 GHz measurement reported by Hallinan
et al. (2017) as a potential—but possibly spurious—detection,

Figure 1. Evolution of the broadband radio-to-X-ray spectral energy
distribution (SED) of GW170817 from 9 days until 160 days since merger.
The radio and X-ray data are dominated by non-thermal synchrotron emission
from the GW170817 afterglow at all times and consistently track each other on
a Fν∝ν−0.6 spectral power-law segment. At early times t�15 days the
optical-near-infrared (NIR) is dominated by radioactively powered emission
from the KN. By day 110 the KN component has faded away and the detected
optical-NIR emission is dominated by the Fν∝ν−0.6 afterglow radiation.
Filled circles: CXO data. Filled squares: Karl J. Jansky Very Large Array
(VLA). Note that while Hallinan et al. (2017) consider their 6 GHz
measurement at ∼10 days only as a potential detection, here we show that it
does naturally lie on the ∝ν−0.6 extrapolation of the X-ray data, which suggests
that this is in fact a real detection (and the earliest radio detection of
GW170817). Filled diamonds at 15 and 9 days: optical-NIR data from Villar
et al. (2017). For day 9 we show the actual data from Tanvir et al. (2017),
Soares-Santos et al. (2017), Cowperthwaite et al. (2017), and Kasliwal et al.
(2017), while for days 15 we show the extrapolated values from the best-fitting
model from Villar et al. (2017). Black dashed line: F XRnµn

b- afterglow
component with βXR=0.6 that best fits the observations at 110 and 160 days.
Dashed red and blue lines: same afterglow model renormalized to match the
observed flux level at 15 and 9 days. Dotted line: best-fitting KN component.
The SED at 15 and 9 days have been rescaled for displaying purposes. The
Hubble Space Telescope (HST) observations from Lyman et al. (2018) obtained
at 110 days (filled diamonds) are shown here for comparison but have not been
used in our fits.

Table 2
VLA Observations of GW170817

Time since
Merger

Mean
Freq. Freq. Range On-source Flux Density

(days) (GHz) (GHz) Time (hr) (μ Jy)

80.10 6.0 3.976–7.896 1.5 37.4±4.2
112.04 5.0 3.796–5.896 1.5 69.7±7.5
112.04 7.0 5.976–7.896 1.5 57.7±4.7
115.05 2.6 2.088–2.984 0.57 82.3±20.7
115.05 3.4 2.888–3.784 0.57 95.8±11.0
115.05 9.0 7.976–9.896 0.69 56.4±10.4
115.05 11.0 9.976–11.896 0.69 52.5±10.1
115.05 13.0 11.976–13.896 1.59 42.3±5.7
115.05 15.0 13.976–15.896 1.59 45.2±7.0
115.05 17.0 15.976–17.896 1.59 44.0±7.9
162.89 2.6 2.088–3.016 0.58 104.5±22.3
162.89 3.4 3.016–3.912 0.58 91.2±17.4
162.89 5.0 4.000–6.000 0.70 80.8±12.5
162.89 7.0 6.000–8.000 0.70 61.1±7.3
162.89 9.0 8.000–10.000 0.70 55±9.9
162.89 11.0 10.000–12.000 0.70 34.4±10.
162.89 13.0 12.000–14.000 1.84 41.7±6.3
162.89 15.0 14.000–16.000 1.84 38.9±7.2
162.89 17.0 16.000–18.000 1.84 43.5±7.7
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Fig. 1.—Synchrotron spectrum of a relativistic shock with a power-law
electron distribution. (a) Fast cooling, which is expected at early times (t !

). The spectrum consists of four segments, identified as A, B, C, and D. Self-t0
absorption is important below . The frequencies, , , and , decrease withn n n na m c a

time as indicated; the scalings above the arrows correspond to an adiabatic
evolution, and the scalings below, in square brackets, correspond to a fully
radiative evolution. (b) Slow cooling, which is expected at late times ( ).t 1 t0
The evolution is always adiabatic. The four segments are identified as E, F,
G, and H.

, where ; and an exponential cutoff for21/2n(g ) P ª n n 1e n

. The maximum emissivity occurs at and is given byn(g ) ne c

.Pn,max
To calculate the net spectrum from a power-law distribution

of electrons, we need to integrate over . There are now twoge
different cases, depending on whether or .g 1 g g ! gm c m c

Let the total number of swept-up electrons in the postshock
fluid be . When , all the electrons cool3N 5 4pR n/3 g 1 ge m c

down to roughly , and the spectral power at is approxi-g nc c

mately . We call this the case of fast cooling. The fluxN Pe n,max
at the observer, , is given byFn

1/3(n/n ) F , n 1 n,c n,max c
21/2F 5 (n/n ) F , n 1 n 1 n , (7)n c n,max m c{ 21/2 2p/2(n /n ) (n/n ) F , n 1 n ,m c m n,max m

where and is the observed2n { n(g ) F { N P /4pDm m n,max e n,max
peak flux at distance D from the source.
When , only those electrons with can cool.g 1 g g 1 gc m e c

We call this slow cooling, because the electrons with ,g ª ge m

which form the bulk of the population, do not cool within a
time t, and we have

1/3(n/n ) F , n 1 n,m n,max m
2(p21)/2F 5 (n/n ) F , n 1 n 1 n , (8)n m n,max c m{ 2(p21)/2 2p/2( ) ( )n /n n/n F , n 1 n .c m c n,max c

The typical spectra corresponding to fast and slow cooling
are shown in Figures 1a and 1b. The low-energy part of these
spectra has empirical support even within the GRB itself (Co-
hen et al. 1997). In addition to the various power-law regimes
described above, self-absorption causes a steep cutoff of the
spectrum at low frequencies (Katz 1994; Waxman 1997b; Katz
& Piran 1997a). For completeness, we show this regime in
Figure 1, but we shall ignore it for the rest of this Letter since
it does not affect either the optical or the X-ray radiation in
which we are interested.

3. HYDRODYNAMIC EVOLUTION AND LIGHT CURVES

The instantaneous spectra do not depend on the hydrody-
namic evolution of the shock. The light curves at a given fre-
quency, however, depend on the temporal evolution of various
quantities, such as the break frequencies and and the peakn nm c

flux . These depend, in turn, on how g and scale as aF Nn,max e

function of t.
We limit the discussion here to a spherical shock of radius
propagating into a constant surrounding density n. WeR(t)

consider two extreme limits for the hydrodynamic evolution
of the shock: either fully radiative or fully adiabatic. In a ra-
diative evolution, all the internal energy generated in the shock
is radiated. This requires two conditions to be satisfied: (1) the
fraction of the energy going into the electrons must be large,
i.e., , and (2) we must be in the regime of fast cooling,e r 1e

.g ! gc m

In the adiabatic case, the energy E of the spherical shock is
constant and is given by (Blandford &2 3 2E 5 16pg R nm c /17p

McKee 1976; Sari 1997). In the radiative case, the energy varies
as , where . Here23 1/3E / g g ˘ (R/L) L 5 [17M/(16pm n)]p

(Blandford & McKee 1976; Vietri 1996; Katz & Piran 1997a)
is the radius at which the mass swept up from the external
medium equals the initial mass M of the ejecta (we used

instead of in order to be compatible with the adiabatic17/16 3/4
expression and to enable a smooth transition between the two);

we write M in terms of the initial energy of the explosion via
, where is the initial Lorentz factor of the ejecta.2M 5 E/g c g0 0

In both the adiabatic and radiative cases, there is a simple
relation connecting R, g, and t: , where the nu-2t 5 R/cg ct

merical value of varies between ª3 and ª7 depending onct
the details of the hydrodynamic evolution and the spectrum
(Sari 1997, 1998; Waxman 1997c; Panaitescu & Mészáros
1997). For simplicity, we use for all cases. We then2t ˘ R/4g c
have the following hydrodynamic evolution equations,

1/4(17Et/4pm nc) , adiabatic,pR(t) ˘ (9)1/7{(4ct/L) L, radiative,

5 3 1/8(17E/1024pnm c t ) , adiabatic,pg(t) ˘ (10)23/7{(4ct/L) , radiative.

Using these scalings and the results of the previous section,
we can calculate the variation with time of all the relevant
quantities. For an adiabatic evolution,

12 23/2 21/2 21 21/2n 5 2.7# 10 e E n t Hz,c B 52 1 d

14 1/2 2 1/2 23/2n 5 5.7# 10 e e E t Hz,m B e 52 d

5 1/2 1/2 22F 5 1.1# 10 e E n D mJy, (11)n,max B 52 1 28

where is the time in days, ergs, is n in units52t E 5 E/10 nd 52 1

radio

kilonova!

X-rayoptical

• perfect power-law over 9 orders of 
magnitude in frequency!

⌫c
<latexit sha1_base64="m3Vkx3IWhAlsrRmBR28QPSe2iPo=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsyI0C4LblxWsA/ojCWTZtrQJDMkGaUM/Q83LhRx67+482/MtLPQ1gOBwzn3ck9OmHCmjet+O6WNza3tnfJuZW//4PCoenzS1XGqCO2QmMeqH2JNOZO0Y5jhtJ8oikXIaS+c3uR+75EqzWJ5b2YJDQQeSxYxgo2VHnyZDn2BzUSJjMyH1ZpbdxdA68QrSA0KtIfVL38Uk1RQaQjHWg88NzFBhpVhhNN5xU81TTCZ4jEdWCqxoDrIFqnn6MIqIxTFyj5p0EL9vZFhofVMhHYyT6hXvVz8zxukJmoGGZNJaqgky0NRypGJUV4BGjFFieEzSzBRzGZFZIIVJsYWVbEleKtfXifdq7pn+d11rdUo6ijDGZzDJXjQgBbcQhs6QEDBM7zCm/PkvDjvzsdytOQUO6fwB87nDxddktk=</latexit><latexit sha1_base64="m3Vkx3IWhAlsrRmBR28QPSe2iPo=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsyI0C4LblxWsA/ojCWTZtrQJDMkGaUM/Q83LhRx67+482/MtLPQ1gOBwzn3ck9OmHCmjet+O6WNza3tnfJuZW//4PCoenzS1XGqCO2QmMeqH2JNOZO0Y5jhtJ8oikXIaS+c3uR+75EqzWJ5b2YJDQQeSxYxgo2VHnyZDn2BzUSJjMyH1ZpbdxdA68QrSA0KtIfVL38Uk1RQaQjHWg88NzFBhpVhhNN5xU81TTCZ4jEdWCqxoDrIFqnn6MIqIxTFyj5p0EL9vZFhofVMhHYyT6hXvVz8zxukJmoGGZNJaqgky0NRypGJUV4BGjFFieEzSzBRzGZFZIIVJsYWVbEleKtfXifdq7pn+d11rdUo6ijDGZzDJXjQgBbcQhs6QEDBM7zCm/PkvDjvzsdytOQUO6fwB87nDxddktk=</latexit><latexit sha1_base64="m3Vkx3IWhAlsrRmBR28QPSe2iPo=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsyI0C4LblxWsA/ojCWTZtrQJDMkGaUM/Q83LhRx67+482/MtLPQ1gOBwzn3ck9OmHCmjet+O6WNza3tnfJuZW//4PCoenzS1XGqCO2QmMeqH2JNOZO0Y5jhtJ8oikXIaS+c3uR+75EqzWJ5b2YJDQQeSxYxgo2VHnyZDn2BzUSJjMyH1ZpbdxdA68QrSA0KtIfVL38Uk1RQaQjHWg88NzFBhpVhhNN5xU81TTCZ4jEdWCqxoDrIFqnn6MIqIxTFyj5p0EL9vZFhofVMhHYyT6hXvVz8zxukJmoGGZNJaqgky0NRypGJUV4BGjFFieEzSzBRzGZFZIIVJsYWVbEleKtfXifdq7pn+d11rdUo6ijDGZzDJXjQgBbcQhs6QEDBM7zCm/PkvDjvzsdytOQUO6fwB87nDxddktk=</latexit><latexit sha1_base64="m3Vkx3IWhAlsrRmBR28QPSe2iPo=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsyI0C4LblxWsA/ojCWTZtrQJDMkGaUM/Q83LhRx67+482/MtLPQ1gOBwzn3ck9OmHCmjet+O6WNza3tnfJuZW//4PCoenzS1XGqCO2QmMeqH2JNOZO0Y5jhtJ8oikXIaS+c3uR+75EqzWJ5b2YJDQQeSxYxgo2VHnyZDn2BzUSJjMyH1ZpbdxdA68QrSA0KtIfVL38Uk1RQaQjHWg88NzFBhpVhhNN5xU81TTCZ4jEdWCqxoDrIFqnn6MIqIxTFyj5p0EL9vZFhofVMhHYyT6hXvVz8zxukJmoGGZNJaqgky0NRypGJUV4BGjFFieEzSzBRzGZFZIIVJsYWVbEleKtfXifdq7pn+d11rdUo6ijDGZzDJXjQgBbcQhs6QEDBM7zCm/PkvDjvzsdytOQUO6fwB87nDxddktk=</latexit> above X-rays

⌫m
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

below radio

slow-cooling regime

(p� 1)/2 = 0.6 ) p = 2.2
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

• other inferred parameters:

E ⇠ 5⇥ 1050 erg, n ⇠ 10�4 cm�3, ✏e = 0.02, ✏B = 0.001
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>


